
1

LibreOffice:
Hermenutical keys to a
complex code-base
Michael Meeks <michael.meeks@suse.com>
mmeeks,#libreoffice-dev, irc.freenode.net

“Stand at the crossroads and look; ask for the ancient
paths, ask where the good way is, and walk in it, and you

will find rest for your souls...” - Jeremiah 6:16

mailto:michael.meeks@suse.com

2

Overview / Agenda … Chunk #1

Codebase overview
Internal core modules, internal leaf,
(ignore externals)

Build + package: gnumake + scp2
Code organisation / git bits
Bear in mind: this is a 20 year old code-base

The code-base is no worse than can be
expected, and things are improving
significantly over time.

3

Overview / Agenda … Chunk #2

System abstractions, basic types
sal / tools
strings, translations

Rendering / GUI pieces
Vcl

Widget layout / old-style dialogs
Main-loop & thread / locking
Images

basebmp, basegfx, canvas, cppcanvas,
drawinglayer

4

Overview / Agenda … Chunk #3

UNO
design / concepts / ongoing work
components as scattered shlibs / .component
service constructors / activation old+new

configmgr – configuration
New style config accessors, and old-style bulk
settings wrappers

Framework / sfx2
SIDs, uiconfig, load/save, SfxItemSets etc.

Chunk #1 – the lowest levels

Module overview – lowest level

7

Internal non-leaf modules: UNO modules

Top-level directory names.
make dump-deps-png
needs graphviz

Each module has a README file:
eg. sal/README

sal: - at the bottom
The system abstraction layer
'tools' is an obsolete internal
~duplication of this module

salhelper: - wrapper code around
sal – also part of URE

8

What is the Uno Runtime Environment (URE)

We'll come onto UNO later in
detail but … for now:

“Uno Runtime Environment”
cf. JRE → Java Runtime Env.
Belongs to the pipe-dream of a
world where UNO was re-used
by other applications.

Provides an ABI / API stable
abstraction layer for the suite

So you can write C++ plugins
For desktop platforms:

Installed in a different place:
ure/ vs. program/

URE

9

UNO module dissection

store: obsolete & irrelevant.
registry: used to keep interface
descriptions
unoidl: used to create / compile
interface descriptions: an IDL
compiler.
cppu: C++ UNO

Implements basic UNO types,
and infrastructure for C++

xmlreader: very simple XML pull
parser
cppuhelper:

luggage to bootstrap UNO,
create UNO components etc.

10

More associated modules

ucbhelper – Universal Content
Broker (ucb) C++ wrapper /
helper classes

ucb - Provides an unusual
Virtual Filing System
abstraction

i18nlangtag: – complicated way
of handling BCP47: a powerful
way to represent subtle language /
locales
jvmfwk: Java / UNO integration
comphelper: lots of good C++
stuff for using UNO – not stable
enough to go into the URE

Module overview – middle level

12

More associated modules
basegfx – algorithms / graphic
types etc. for basic graphics.

tools: – more basic types:
SvStream – internal stream type

vs. UCB vs. sal/ file pieces.
Color COL_RED etc.
INetURLObject – canonical
URL handling
SolarMutex
Resources, translation
Polygon / PolyPolygon
Date / Time classes
A total grab-bag of things

13

Unit testing pieces:
cppunit: - ~all our tests are
ultimately cppunit tests though
this is an external module.
unotest: low level testing of
simpler / UNO infrastructural
pieces. Bootstrap UNO enough to
be able to test filters, components
etc.

All of that requires types /
services, configuration etc.

test: helpers for testing standard
interfaces, more advanced tests:
brings UCB bootstrap (for
streams), VCL initialization,
graphic filter pieces etc.

14

Other non-graphical bits ...
i18nutil: - 'honest C++ code'
wrapping UNO l10n madness eg.
'bool isUpper (sal_Unicode c);'
unotools: - C++ helpers for using
UCB eg.
SvStream *CreateStream(OUString &rPath);

Misc. font & config handling
sot: - handles OLE2 / compound
file storage for binary documents
svl: - non-graphical (no VCL
dependency) pieces originally
from svtools/ or sfx/ eg.
SfxItemSet – the key C++
property-bag class

Undo/Redo, and more ...
'tools' but higher up ...

15

Graphical / toolkit pieces ...
basebmp: - the vcl rendering
model implemented as pixel-
bashing (using vigra + basegfx)
vcl: - Visual Class Libraries – the
LibreOffice graphical toolkit, on
this – more later.
toolkit: - a particularly thin &
horrible UNO API wrapper with
Model/View flavour on top of vcl.
canvas: - alpha transparent, anti-
aliased UNO rendering API –
more modern rendering than VCL,
primarily used by slideshow

DirectX, Cairo & VCL impls.
cppcanvas: - C++ wrappers to
make using the canvas less bad.

16

Non-Graphical grab-bag ...
basic: - the StarBasic parser /
interpreter & run-time.
xmlscript: XML serialisation of
(orrible) basic dialogs which wrap
the toolkit pieces for in-document
scripting / macro dialogs.
connectivity: - UNO implemented
database drivers for all manner of
backends:

Postgresql, MySQL, Mozilla
addressbook, Evolution, JDBC,
ODBC etc. etc.

sax: - wrapper of libxml2 –
providing an UNO sax API for
parsing XML files, and an
XFastParser for tokenising them.

17

Graphical grab-bag
svtools: - lots of pieces

tree / list controls
table control
dialog helpers
accessibility helpers
options wrappers
print dialogs
filedialog helpers
imagemaps
wizard helpers etc.

Module overview – upper level

19

Document / Chrome pieces ...
framework: - manages docking,
toolbars, menus, status bar,
sidebars, task-panes

'new' (over-engineered) code
with heavy UNO logic

sfx2: - works closely with
framework, core of the app.

load / save logic: SfxMedium
manage views on top of
framework
'Help' pieces, quick-starter,
Dialog helpers: tab dialogs
Document meta-data dialogs
Template management
Shared style pieces.

20

Miscellaneous pieces
formula: - nominally shared code
extracted from calc (sc) for use in
reportdesign
avmedia: - Audio / Video media –
multimedia abstraction over
DirectX, quicktime, gstreamer
linguistic: - implements UNO
services for spell / hyphenator &
thesaurus.
xmlsecurity: - XML document
encryption and signing used for
ODF.
vbahelper: - helper code for
implementing VBA / macro
interoperability with MS Office

21

Load / save / filter logic ...
package: - ZIP file compress / de-
compress, also handles manifest
files in the .zip with UNO
stream / storage interfaces
xmloff: - ODF file filters and
helpers to load / save our model
to/from ODF.

Often working in conjunction
with eg. sw/source/filter/xml/

filter: - meta-data to manage,
register and auto-detect filters

Also flat-ODF, XSLT filters,
graphic filters, flash + svg
export & more.

oox: - shared MS Office Open
XML (import) filter pieces.

22

Applications ...
desktop: - legacy name,
StarOffice 5 had a 'desktop'
complete with 'Start' menu etc.

here lives the real 'main'
desktop/source/app/app.cxx

sd: - Star Draw (Impress)
Drawings + Presentations

sw: - 'Star Writer'
Word processor

sc: - Star Calc
Spreadsheet

23

Caveats: this is a simplified picture

That was just the non-leaf nodes.
This is a linking dependency graph

UNO component use is hard to graph / grok.
 fundamentally a dependency breaking
technology.

other important bits:
cui: - a big bag of dialogs – split to avoid loading
ucb: - Universal Content Broker
chart2: - embedded chart rendering and model
slideshow:- the piece that renders your slideshow.
solenv:- where the build infrastructure lives.

Build + Package

25

Build: configure etc.

autoconf / configure reasonably sane
autogen.sh – a wrapper around autotools

builds & runs configure script etc.
keep your parameters in autogen.input

Builds:
config_host.mk from config_host.mk.in

This contains all the variables we need.
config_host/*.h – from templates

containing the build configuration.

26

Build: gnumake ...

gnumake used in some odd ways
code is in solenv/gbuild/
Each module has it's own Makefile

You can build each independently after a
full-build.
All rules are built by $(call Function,...)
magic, we don't use generic / built-in
rules.

=> if something is compiled – we have
an explicit rule for it (somewhere)

27

Build: output ...

We build into several places
solver/<platform>/lib/

The legacy location – 'solver' was a big bundle
of stuff distributed via NFS inside
StarDivision in the olden-days

workdir/<platform>/LinkTarget
gnumake builds here and copies to solver

instdir/<platform>/
We're migrating to this: a tree constructed to
look like our install
ie. build an install image at compile.

28

Build/Install: packaging that

instsetoo_native/CustomTarget_install.mk
[install-set-oo-native]

or make dev-install
Both use:

solenv/bin/make_installer.pl
This operates on the output of: scp2

scp2 – is C pre-processed install rules
make_installer.pl is a giant perl-script

builds MSI files on Windows, installs on Unix.
Android/iOS have a different flow.

29

Finally – key modules in build...

postprocess
packimages/

Using solenv/bin/packimages.pl – build icon
theme .zip and sort it by access pattern

CustomTarget_registry.mk
Build configuration files from officecfg/

Rdb_Services.mk
Build services.rdb file from .components

officecfg/
Home of all defaults / office configuration / settings

30

Internal module organisation ...

include/
All global includes live in include/<module>/

sfx2/inc - includes local to module
source/* - source code for module
source/inc/ - other includes local to module
uiconfig/ - new-style XML UI descriptions
sdi/ - descriptions of slots / actions
qa/ - unit tests, test file data etc.

Lots of things moved over time:
git log -u --follow -- include/sfx2/new.hxx

31

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 3.0 License
(unless otherwise specified). "LibreOffice" and "The Document Foundation" are registered trademarks. Their respective logos
and icons are subject to international copyright laws. The use of these therefore is subject to the trademark policy.

Questions / conclusions

Are you still alive ?Are you still alive ?

That was very dense and high-levelThat was very dense and high-level

Hopefully it's useful.Hopefully it's useful.

We have a lot of modulesWe have a lot of modules
You can safely not know about the vast majority of them.You can safely not know about the vast majority of them.

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.documentfoundation.org/TradeMark_Policy

	First Slide Example
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Final Slide Example

