
1

LibreOffice:
Hermenutical keys to a
complex code-base #2
Michael Meeks <michael.meeks@suse.com>
mmeeks,#libreoffice-dev, irc.freenode.net

“Stand at the crossroads and look; ask for the ancient
paths, ask where the good way is, and walk in it, and you

will find rest for your souls...” - Jeremiah 6:16

mailto:michael.meeks@suse.com

2

Overview / Agenda … Chunk #2

System abstractions, basic types
sal / tools
strings, translations

Rendering / GUI pieces
Vcl

Widget layout / old-style dialogs
Main-loop & thread / locking
Images

basebmp, basegfx, canvas, cppcanvas,
drawinglayer

Chunk #2 – grokking the code

Sal pieces

5

Strings … include/rtl/ustring.hxx ...

Three important string classes – but converging on two
New sal / immutable strings:

ref-counted
OUString – UTF16, 32bit lengths
OString – unspecified 8bit encoding, 32bit length

String ('UniString')
Internally re-uses OUString data structures
old 'mutable' string – but uniquifies on change
16bit length enforcement on underlying 32bit len
UTF16 – (if you're lucky)
Writer's limit of 64k chars per paragraph: is here.

6

Strings … constructing & mutating

OUStringBuffer
include/rtl/ustrbuf.hxx
Used to construct strings, concatenate them etc.
steal to an OUString with 'makeStringAndClear()'

Conversion OUString ↔ String is fast
Construction from const char foo[N] is implicit
String – required for translation:

String(ResId(STR_FOO))
ResId etc. lives in tools/ ie. high above sal/

include/comphelper/string.hxx – lots of good helpers.
Debugging … - python needed ...

7

Strings … Translation ...

Translated resources keyed from a unique integer ID
This is scoped to the module / resource file eg.
sw/inc/access.hrc – shared between .src and .cxx
#define STR_ACCESS_DOC_NAME (RC_ACCESS_BEGIN + 1)

sw/source/ui/docvw/access.src – define the US val:
String STR_ACCESS_DOC_NAME

{

 Text [en-US] = "Document view";

};

sw/source/core/access/accdoc.cxx:
 SetName(GetResource(STR_ACCESS_DOC_NAME));

Should be easy to extend …
Resource files compiled by rsc/ code to a binary .res file eg.

program/resource/swen-US.res – in the install

8

Stream APIs … - all URL based

include/osl/file.hxx – (from sal/osl)
C++ Volume / File / DirectoryItem API

include/tools/stream.hxx – (SvStream)
C++ more traditional stream object

lots of variants, buffering
operator overloads for << and >> [urgh!]

udkapi/com/sun/star/io/XinputStream.idl
UNO stream impl. - as implemented by UCB, and
package code.

include/unotools/streamwrap.hxx
Convert SvStream ↔ UNO

VCL ...

10

Visual Class Libraries (VCL)

The LibreOffice toolkit
Lots of backends:

headless/ - ie. No display pixel-bashing
android/ & quartz/ - for Android /iOS
both ultimately 'headless' sub-classes.

unx/
pluggable backends for gtk2, gtk3, KDE3, KDE4

win/ & aqua/ - Windows / Mac backends
generic/

shared code between unx-like backends

11

VCL main-loop / mutex / events ...

LibreOffice is fundamentally single threaded
“the” one big lock: is the 'SolarMutex'
This is recursive
'Application::Yield' VCL (or
Application::Reschedule)

releases the lock while we wait
for input / timeout

code in vcl/source/ defers to backends for this
eg. vcl/headless/svpinst.cxx Yield / DoReleaseYield
Unfortunately VCL is explicitly lifecycle managed:

New / delete – which causes some problems ...

12

VCL event emission ...

main-loop dispatches timeouts, user events
input events – associated with a SalFrame sub-class
vcl/inc/salframe.hxx
class SalFrame { …

 // Callbacks (indepent part in

 // vcl/source/window/winproc.cxx)

 // for default message handling return 0

 void SetCallback(Window* pWindow, SALFRAMEPROC pProc)

 { m_pWindow = pWindow; m_pProc = pProc; }

 long CallCallback(sal_uInt16 nEvent,

 const void* pEvent) const

 {

 return m_pProc ? m_pProc(m_pWindow,
const_cast<SalFrame*>(this), nEvent, pEvent) : 0;

 }

13

VCL event emission ...

After mapping the input:
eg. vcl/unx/gtk/window/gtksalframe.cxx
 SalWheelMouseEvent aEvent;

 aEvent.mnTime = pSEvent->time;

 aEvent.mnX = (sal_uLong)pSEvent->x;

 aEvent.mnY = (sal_uLong)pSEvent->y;

Call the callback:
 pThis->CallCallback(SALEVENT_WHEELMOUSE,
 &aEvent);

This enters: vcl/source/window/winproc.cxx
Multiplexed outwards to the VCL / Window
internals & listeners.

14

Tools / links – wrapping a fn. Ptr ...

ImplCallEventListenersAndHandler

Uses include/tools/link.hxx
include/vcl/button.hxx
class Button {

Link maClickHdl; ...

void SetClickHdl(const Link& rLink)

 { maClickHdl = rLink; }

User does:
Button maButton;

maButton.SetClickHdl(LINK(this, NewObjectDialog,

 OkButtonHandler));

...

 IMPL_LINK_NOARG(NewObjectDialog, OkButtonHandler)

 {

 SAL_DEBUG(“ok pressed”);

15

VCL event emission … a control ...

eg. Button … vcl/source/control/button.cxx
 void PushButton::MouseButtonDown(
 const MouseEvent& rMEvt)

 { ...

 if (…)

 Click();

 }

 …

 void Button::Click()

 {

 ImplCallEventListenersAndHandler(

 VCLEVENT_BUTTON_CLICK,

 maClickHdl, this);

 }

16

VCL: Rendering model ...

Unlike modern toolkits VCL has two rendering models:
Immediate rendering:

Render anything, at any time on your Window.
All Windows – are an 'OutputDevice' sub-class

 void DrawLine(const Point& rStartPt,

 const Point& rEndPt);

Invalidate → Idle → re-render
Wait for the app to be ready to render
Window::Invalidate(const Rectangle& rRect,

 sal_uInt16 nFlags = 0);

This causes some issues.
cf. basebmp/source/bitmapdevice.cxx (setDamageTracker)

17

VCL: Images … split Alpha ...

include/vcl/bitmapex.hxx / bitmap.hxx
Unfortunately VCL was started 20+ years ago

No full alpha transparency then.
separate 'mask' – with a different bit-depth (1bit) was.

In consequence:
Bitmap – is a non-alpha transparent bitmap (or mask)
BitmapEx – combines two Bitmaps: a Bitmap + an AlphaMask
This makes pixel operations somewhat complicated

Bitmaps have different platform representations:
BitmapReadAccess / BitmapWriteAccess – to access the underlying pixels
eg. vcl/source/gdi/impimage.cxx ImplUpdateDisabledBmpEx

'Image' – class wraps this – giving a cut-out of an image-strip (obsolete)
All Image/Bitmap/BitmapEx primitives are pImpl + ref-counted

18

VCL: Bitmaps … getting stock images

vcl/source/gdi/bitmapex.cxx (BitmapEx::BitmapEx (ResId …)
gets string name from resource
loads image from 'image tree' singleton.

vcl/source/gdi/impimagetree.cxx
Some nice sample code to read through

Used to load themed images.
Look for /.zip/
Notice the SvStream vs. XinputStream

19

VCL: Layout / graphical look ...

Well documented elsewhere
Recommend presentations from Caolan on this and/or his
write-ups:
http://blogs.linux.ie/caolan/2013/01/24/converting-libreoffic
e-dialogs-to-ui-format-100-conversions-milestone/

Finally we have a UI dialog / toolkit layout approach.

Hopefully in the end this will lead to smart pointers
everywhere and an end to lifecycle issues.

http://blogs.linux.ie/caolan/2013/01/24/converting-libreoffice-dialogs-to-ui-format-100-conversions-milestone/
http://blogs.linux.ie/caolan/2013/01/24/converting-libreoffice-dialogs-to-ui-format-100-conversions-milestone/

20

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 3.0 License
(unless otherwise specified). "LibreOffice" and "The Document Foundation" are registered trademarks. Their respective logos
and icons are subject to international copyright laws. The use of these therefore is subject to the trademark policy.

Questions / conclusions

VCL is a 20+ year old toolkitVCL is a 20+ year old toolkit

The code-base is no worse than can be expectedThe code-base is no worse than can be expected

Everything needs some love & understandingEverything needs some love & understanding

No reason why we can' t do radical things with the APINo reason why we can' t do radical things with the API

Things are improving over timeThings are improving over time

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.documentfoundation.org/TradeMark_Policy

	First Slide Example
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

