
1 / 28 LibreOffice Conference 2015, Aarhus | Michael Meeks

LibreOffice: Code Structure
Hermenutical keys to a
complex code-base

Michael Meeks
General Manager at Collabora Productivity

michael.meeks@collabora.com

@CollaboraOffice

www.CollaboraOffice.com@CollaboraOffice

mmeeks, #libreoffice­dev, irc.freenode.net
“Stand at the crossroads and look; ask for the

ancient paths, ask where the good way is,
and walk in it, and you will find rest for your

souls...” - Jeremiah 6:16

mailto:michael.meeks@collabora.com

2

Overview / Agenda … Chunk #1

● Codebase overview

– Internal core modules, internal leaf,
(ignore externals)

● Build + package: gnumake + scp2
● Code organisation / git bits
● Bear in mind: this is a 20 year old code-

base
● The code-base is rather better than can

be expected, and things continue to
improving over time.

https://collaboraoffice.com

Module overview –
lowest level

4

Internal non-leaf modules:
UNO modules

● Top-level directory names.

● make dump­deps­png
needs graphviz

● Each module has a README file:

● eg. sal/README
● sal: - at the bottom

● The system abstraction layer
● 'tools' is an obsolete internal

~duplication of this module
● salhelper: - wrapper code around

sal – also part of URE

5

What is the Uno Runtime Environment
(URE)

● We'll come onto UNO later in detail
but … for now:

● “Uno Runtime Environment”
● cf. JRE → Java Runtime Env.
● Belongs to the pipe-dream of a

world where UNO was re-used by
other applications.

● Provides an ABI / API stable
abstraction layer for the suite

● So you can write C++ plugins
● Careful:

● We have to watch our ABI here.
● ABI control via C symbol map files

URE

6

UNO module dissection

● store: obsolete & irrelevant.

● registry: used to keep interface
descriptions

● unoidl: used to create / compile interface
descriptions: an IDL compiler.

● cppu: C++ UNO

● Implements basic UNO types, and
infrastructure for C++

● xmlreader: very simple XML pull parser

● cppuhelper:

● luggage to bootstrap UNO, create
UNO components etc.

7

More associated modules

ucbhelper – Universal Content
Broker (ucb) C++ wrapper / helper
classes

● ucb - Provides an unusual Virtual
Filing System abstraction

i18nlangtag: – module that handles
BCP47: a powerful way to represent
subtle language / locales

jvmfwk: Java / UNO integration

comphelper: lots of good C++ stuff
for using UNO – not stable enough
to go into the URE

https://collaboraoffice.com

Module overview –
middle level

9

More associated modules
● basegfx – algorithms / graphic types

etc. for basic graphics.

● tools: – more basic types:

● SvStream – internal stream type

– vs. UCB vs. sal/ file pieces.
● Color COL_RED etc.
● INetURLObject – canonical

URL handling
● SolarMutex (the big lock)
● Resources, translation
● Polygon / PolyPolygon
● Date / Time classes
● A total grab-bag of things

10

Unit testing pieces:
● cppunit: - ~all our tests are

ultimately cppunit tests though
this is an external module.

● unotest: low level testing of
simpler / UNO infrastructural pieces.
Bootstrap UNO enough to be able
to test filters,
components etc.

● All of that requires
types / services, configuration etc.

● test: helpers for testing standard interfaces, more advanced tests: brings
UCB bootstrap (for streams), VCL initialization, graphic filter pieces etc.

● CppUnit*_.mk files in directories

11

Other non-graphical bits ...
● i18nutil: - 'honest C++ code'

wrapping UNO l10n madness eg.
'bool isUpper (sal_Unicode c);'

● unotools: - C++ helpers for using
UCB eg.
SvStream *CreateStream(OUString &rPath);

● Misc. font & config handling
● sot: - handles OLE2 / compound file

storage for binary documents

● svl: - non-graphical (no VCL
dependency) pieces originally from
svtools/ or sfx/ eg. SfxItemSet – the
key C++ property-bag class

● Undo/Redo, and more ...
● 'tools' but higher up ...

12

Graphical / toolkit pieces ...

● vcl: - Visual Class Libraries – the
LibreOffice graphical toolkit, on
this – more later.

● toolkit: - a particularly thin &
horrible UNO API wrapper with
Model/View flavour on top of vcl.

● canvas: - alpha transparent, anti-
aliased UNO rendering API – more
modern rendering than VCL,
primarily used by slideshow

● DirectX, Cairo & VCL impls.
● cppcanvas: - C++ wrappers to

make using the canvas less bad.

13

Non-Graphical grab-bag ...

● basic: - the StarBasic parser /
interpreter & run-time.

● xmlscript: XML serialisation of
(orrible) basic dialogs which wrap
the toolkit pieces for in-document
scripting / macro dialogs.

● connectivity: - UNO implemented
database drivers for all manner of
backends:

● Postgresql, MySQL, Mozilla
addressbook, Evolution, JDBC,
ODBC etc. etc.

● sax: - wrapper of libxml2 –
providing an UNO sax API for
parsing XML files, and an
XFastParser for tokenising them.

14

Graphical grab-bag
● svtools: - lots of pieces

● tree / list controls
● table control
● dialog helpers
● accessibility helpers
● options wrappers
● print dialogs
● filedialog helpers
● imagemaps
● wizard helpers etc.

https://collaboraoffice.com

Module overview –
upper level

16

Document / Chrome
pieces ...

● framework: - manages docking,
toolbars, menus, status bar,
sidebars, task-panes

● 'new' (over-engineered) code
with heavy UNO logic

● sfx2: - works closely with
framework, core of the app.

● load / save logic: SfxMedium

● manage views on top of
framework

● 'Help' pieces, quick-starter,

● Dialog helpers: tab dialogs

● Document meta-data dialogs

● Template management

● Shared style pieces.

17

Miscellaneous pieces
● formula: - nominally shared

code extracted from calc (sc) for
use in reportdesign

● avmedia: - Audio / Video media
– multimedia abstraction over
DirectX, quicktime, gstreamer

● linguistic: - implements UNO
services for spell / hyphenator &
thesaurus.

● xmlsecurity: - XML document
encryption and signing used for
ODF.

● vbahelper: - helper code for
implementing VBA / macro
interoperability with MS Office

18

Load / save / filter logic ...
● package: - ZIP file compress / de-

compress, also handles manifest
files in the .zip with UNO stream /
storage interfaces

● xmloff: - ODF file filters and
helpers to load / save our model
to/from ODF.

● Often working in conjunction
with eg. sw/source/filter/xml/

● filter: - meta-data to manage,
register and auto-detect filters

● Also flat-ODF, XSLT filters,
graphic filters, flash + svg
export & more.

● oox: - shared MS Office Open
XML (import) filter pieces.

19

Applications ...

● desktop: - legacy name,
StarOffice 5 had a 'desktop'
complete with 'Start' menu etc.

● here lives the
real 'main'

● desktop/source/app/app.cxx
● sd: - Star Draw (Impress)

● Drawings + Presentations
● sw: - 'Star Writer'

● Word processor
● sc: - Star Calc

● Spreadsheet

20

Caveats: this is a
simplified picture

● That was just the non-leaf nodes.

● This is a linking dependency graph

● UNO component use is hard to graph / grok.
● fundamentally a dependency breaking

technology.
● other important bits:

● cui: - a big bag of dialogs – split to avoid loading
● ucb: - Universal Content Broker
● chart2: - embedded chart rendering and model
● slideshow:- the piece that renders your slideshow.
● solenv:- where build infrastructure lives.

https://collaboraoffice.com

Build + Package

22

Build: configure etc.

● autoconf / configure reasonably sane
● autogen.sh – a wrapper around autotools

● builds & runs configure script etc.
● keep your parameters in
autogen.input

● Builds:
– config_host.mk from config_host.mk.in

● This contains all the variables we need.
– config_host/*.h – from templates

● containing the build configuration.

23

Android / Online build
● Android

● Normal core.git, configure nicely:
­­with­android­ndk, ­­with­android­sdk etc.

– Checkout README.android
● Binaries end up in android/ as APK files.

● Online
● Normal autotools style configure / make / make

run.
● Ensure you use:

­­with­lo­path=core.git/instdir

­­enable­debug

● To get working unit tests

24

Build: gnumake ...

● gnumake used in some odd ways
● code is in solenv/gbuild/
● Each module has it's own Makefile

– You can build each independently after a
full-build.

– All rules are built by $(call Function,...)
magic, we don't use generic / built-in
rules.

=> if something is compiled – we have
an explicit rule for it (somewhere)

● Following the rules is not trivial: $(1) $(7)→

25

Build: output ...

● We build a working image into 'instdir/'
● instdir/program

– Contains a runnable image post 'make'
● The authoritative location for libraries

– make && instdir/program/soffice.exe

● workdir/*

– object files, and build intermediates here
– generated headers
– unpacked external source code etc.

26

Finally – key modules in build...
● postprocess

● packimages/
– Using solenv/bin/packimages.pl – build icon

theme .zip and sort it by access pattern
● CustomTarget_registry.mk

– Build configuration files from officecfg/
● Rdb_Services.mk

– Build services.rdb file from .components
● officecfg/

● Home of all defaults / office configuration /
settings

27

Internal module organisation ...
● include/

● All global includes live in include/<module>/
● sfx2/inc - includes local to module

● source/* - source code for module
● source/inc/ - other includes local to module
● uiconfig/ - new-style XML UI descriptions
● sdi/ - descriptions of slots / actions
● qa/ - unit tests, test file data etc.

● Lots of things moved over time:
● git log ­u ­­follow – include/sfx2/new.hxx

– Only works for one file

https://collaboraoffice.com

28

Questions / conclusions

● Are you still alive ?Are you still alive ?

● That was very dense and high-levelThat was very dense and high-level

● Hopefully it's useful.Hopefully it's useful.

● We have a lot of modulesWe have a lot of modules

– You can safely not know about the vast majority of You can safely not know about the vast majority of
them.them.

Oh, that my words were recorded, that they were written on a scroll, that they were
inscribed with an iron tool on lead, or engraved in rock for ever! I know that my
Redeemer lives, and that in the end he will stand upon the earth. And though this
body has been destroyed yet in my flesh I will see God, I myself will see him, with
my own eyes - I and not another. How my heart yearns within me. - Job 19: 23-27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Final Slide Example

